
NAIT

Edmonton, Alberta

Automatic 3D Scanner

As a submission to
Mr. Kelly Shepherd, Instructor

English and Communications Department

Submitted by Jonas Buro, Student
CMPE 2960

Computer Engineering Technology

April 27, 2018



11762 106 St NW
Edmonton, AB T6J 2R1

April 20, 2018

Mr. Kelly Shepherd
Instructor, CNT Department
NAIT
11762 106 St NW
Edmonton, AB T6J 2R1

Dear Mr. Shepherd,

I am submitting the report Automatic 3D Scanner for your evaluation. This report fulfills the
major focus of CMPE2960: Computer Engineering Capstone.

This report details the hardware and software design of an automatic 3D scanner. It explains
fully the automatic process which transforms a physical real world object into a standardized digi-
tal representation.

I’d like to thank all of my instructors within the CNT department at NAIT for their willingness
to share their detailed knowledge of everything computer related. Their helpfulness was a valuable
resource in the creation of this project.

Sincerely,

Jonas Buro
CNT Student

ii



Contents

Abstract iv

1 Introduction 1

2 Hardware 2
2.1 Kinect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Motor Driver Chips: TMC2130 and EasyDriver v4.5 . . . . . . . . . . . . . . . . . . 5
2.5 Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Communications 7
3.1 Stepper Motor Driver ↔ Micro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 PC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Software 10
4.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4 Data Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.4.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4.2 Initial Mesh Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4.3 Mesh Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4.4 Surface Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4.5 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.5 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Results/Conclusion 18

List of Figures

1 Microsoft Kinect v2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Rotating platform schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3 Nema 17 stepper motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4 Stepper motor driver chips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
5 Genuino Uno microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
6 Data flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
7 Serial communication layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
8 Data flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
9 Example of a clean point cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
10 User interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

iii



Abstract

The digitization of real world objects is incredibly powerful and is useful for a wide va-

riety of applications. From understanding and replicating the functionality of complex parts

and shapes, to accurately mapping the environment, to creating more realistic digital enter-

tainment, 3D scanning is growing quickly throughout many disciplines, especially mechanical

engineering. The automatic 3D scanning process involves acquiring depth information of the

target object, transforming this data into a clean, usable format, and then processing it to cre-

ate a digital representation. We leveraged the Windows Kinect’s infrared sensing technology

and its C# development kit in tandem with a rotating platform to construct a point cloud

from a real world object. We then transformed the points into a standardized 3D digital object

that represents the original by incorporating robust reconstruction algorithms developed by

pioneers in the 3D scanning field in addition to our own. The final deliverable is accessible in

most 3D printing and viewing applications.

iv



1 Introduction

3D scanning technology is a very useful tool in a multitude of applications. The digitization of real

world objects allows for the non intrusive analysis of the object’s structure, the modification of its

structure, and the accurate replication of the object through 3D printing. These processes extend

benefits into most design processes and will continue to gain traction as the technology is refined.

The purpose of this report is to fully explain the processes involved in constructing a 3D scanner,

as well as developing the software which transforms the acquired data into a clean and useful

format. We decided to take on this project as we were interested in developing a fully fledged

software project which integrates a hardware component. The Windows Kinect v2 sensor which we

leveraged in this project has a standard development kit accessible through C#, the primary object

oriented programming language that was taught in the CNT program at NAIT. The mathematical

processes which constitute the post processing reconstruction of our design are also of interest to

us. We set out to deliver a fully transferable digitized 3D representation of a real world object and

succeeded in doing so.

This report will first analyze the hardware which we chose for our design, then inspect the com-

munication procedures and protocols between devices, and finally detail the software development

process of building a client application and reconstructing the gathered data. The sections of this

report are visible in the table of contents for navigation purposes.

1



2 Hardware

Within this section are descriptions of the mechanical and electrical technologies we used to create

an automatic 3D scanner.

2.1 Kinect

In order to represent a real world object digitally, all exterior surfaces of the object must be sampled

and reconstructed. In order to acquire this surface information, some kind of sensor/receiver pairing

must be utilized. The choice we made for our project was the Windows Kinect v2 for Xbox 1. This

powerful device can be controlled through its standard development kit from Microsoft, which allows

the user to program in C#. The Kinect v2 features a 640-480 pixel IR-depth finding camera which

runs at up to 30Hz. The depth sensor consists of an infrared laser projector combined with a

monochrome CMOS sensor, which captures video data in 3D under any lighting conditions, at 11-

bit depth resolution. The infrared transmitter array transmits invisible light and measures its time

of flight after reflecting off of the target object, in order to construct a field of points with depth

information. The sensor’s acquisition field is user definable and allows us to restrict the captures to

the minimum volume required for the scanning of an object. Although no official documentation

exists on the accuracy or precision of the Kinect v2, the test runs within the community conclude

that at 50cm, the depth resolution is accurate to within 1.5mm, and although this is not great,

we can account for this by taking multiple samples and then averaging their values (more on this

in the software section). To interface with the Kinect, users must power it and connect to it to a

computer via USB 2.0 or greater, through its combined power and data adapter. We circumvented

this peculiarity with our second Kinect device by opening it up and manually soldering in the power

connection and connecting to it with a standard USB2.0 cable.

Figure 1: Microsoft Kinect v2

2



2.2 Platform

In order to obtain the entire surface information of a particular object, one must view it from all

angles. One can achieve this in a few ways, including a multiple sensor setup or a rotating sensor. We

opted instead to implement a static sensing/receiving unit and a rotating platform, as we believed

that building a moving sensor would have required a higher degree of mechanical precision. The

platform was built in AutoCAD and 3D printed. It consists of a circular platform who’s center point

connector is form fit for a type D stepper motor shaft and is secured with a set screw. The motor is

connected to the platform and then attached to a 3D printed plastic support mount which features

bearings to support the rotating platform from below. The inclusion of bearings is a necessity in

this case, as the added support allows the platform to rotate orthogonally with respect to the sensor

in a smooth manner.

Figure 2: Rotating platform schematic

3



2.3 Motor

The driving force behind our project is a Nema 17 200 step bipolar stepper motor, selected specif-

ically for efficiency and precision. Our motor is rated for 5V/2A, and allows for a holding torque

of 3.2 kg-cm, more than enough to handle our maximum target object weight specification of 3kg.

Stepper motors are able to control the angular position of the rotating shaft, called the rotor, with-

out a feedback loop and are very precise, both great features for our design. Stepper motors have

multiple electromagnetic coils around a central gear shaped piece of magnetic metal, such as iron.

These electromagnets are energized through an external source, creating a temporary electric field

which in turn creates a temporary magnetic field which, depending on the particular orientation,

attract or repel the metal gear on the rotor, shifting it to the next position. Bipolar motors have a

single electromagnet per phase, so in order to achieve full rotation, current must pass through these

windings in both directions, resulting in a more complex driving sequence compared to a unipolar

motor. This problem was easily routed by obtaining a stepper motor driver chip which contains a

driver block which can supply the necessary reversal of current.

Figure 3: Nema 17 stepper motor

4



2.4 Motor Driver Chips: TMC2130 and EasyDriver v4.5

In order for the stepper motor to turn, it requires current to flow through the windings to align

the magnetic rotor. The sequence in which the windings are energized is essential for coherent

operation of the motor, and can be relatively complicated based on the motor type. The TMC2130

chip provides an integrated motor driver solution to this problem. Additionally, the chip contains

a multitude of additional features, such as a microstepping indexer, stall detection technology, load

dependant current control, as well as other features. The driver block of this chip consists of N-

Channel MOSFETS in an H-Bridge configuration to drive the motor windings. Additionally, the

device has an SPI interface for configuration and diagnostics, as well as a standalone step/direction

interface for easy operation. We combined both interfaces in order to analyze the status of the

rotating platform while issuing it step commands. The primary motivation behind sourcing this

chip was to leverage its PWM microstepping capabilities to gain a higher resolution point cloud,

however, we were unable to implement this before the deadline. From a software point of view, the

chip is a peripheral with a number of control and status registers which can be written to or read

from. We utilized a third party library to interface with this chip, and modified it to match our

demands.

The EasyDriver v4.5 motor driver chip is our fallback hot switch chip. It’s functionality and

use is mostly identical to the TMC2130, however it lacks SPI support. Both chips can drive around

750 mA per phase of a bi-polar motor, and are a necessary intermittent step in the communication

chain as the microcontroller can’t issue this amperage from an output pin.

(a) TMC2130 (b) EasyDriver

Figure 4: Stepper motor driver chips

5



2.5 Microcontroller

In order to interface between the client application and the stepper motor driver chip, an inter-

mediary device must be used in order to supply the necessary digital pulses to the required pins.

We chose a Genuino Uno, because it is well documented, easy to use, and has a small form factor.

The Uno is a widely used open source microcontroller board based on the ATmega328P. It contains

14 digital IO pins, a 16 MHz crystal, and a type B USB interface. It is programmable with the

Arduino integrated development environment via USB. The ATMega328 has a bootloader already

built in so that you can use it without the use of an external hardware programmer out of the box.

Conveniently, the Uno also has SPI support through the standard Arduino SPI library, necessary

for sending configuration commands to the motor driver chip. In total, we used seven digital output

pins of the Uno to communicate with the motor driver chip; the configuration is detailed in Figure

5.

Figure 5: Genuino Uno microcontroller

6



3 Communications

This section contains information detailing the communication protocols between our hardware

components.

Figure 6: Data flow

3.1 Stepper Motor Driver ↔ Micro

Forming an information bridge between the Genuino Uno and the TMC2130 stepper motor driver

chip was relatively straightforward, thanks to both the built in Arduino SPI library and a third

party library we sourced for the chip. By connecting pins 10-13 to their counterparts on the chip

(see figure below), we formed a SPI connection, which is an interface bus commonly used to send

data between microcontrollers and peripherals. It utilizes a master-slave configuration, in which

the master device (in this case, the microcontroller) slave selects a single peripheral at a time for

communication. This configuration requires more signal wires than serial, and the communications

must be well-defined prior to operation, but it yields higher transmission speeds, allows for data

exchange in both directions simultaneously, and can support more than one communication partner.

SPI communications require a clock line, two data lines (MISO/MOSI), and a select line, as opposed

to serial’s two data differential wires. SPI is synchronous, which syncs both the sender and receiver

through the clock. The oscillating clock tells the designated receiver when to sample the bits on

the data line. Depending on the configuration, this can either occur at the rising or falling edge of

the clock pulse, based on the polarity configuration of the clock. Another advantage this interface

7



provides is that the receiver can be a simple shift register instead of the fully developed UART.

For our specific peripheral, the TMC2130, whenever data is read from or written to it, the MSBs

delivered back to the micro contain the status of the driver. Based on the parity of the returned

bits, we can compare the result to a register lookup table and determine the status of the rotating

platform. Within our communications protocol coded using the gcc compiled Uno IDE, we read

from the SPI directly after issuing a step command to the motor. If we receive an error status, we

acknowledge it and let the client application know. More on this in the next section.

3.2 Microcontroller

The Uno communicates with the PC running the client application through a USB ≥ 2.0 connection.

A serial communication interface transfers one bit in or out at a time, a major difference to the

above mentioned SPI. This method of communication has been the most common method to transfer

data between two digital devices throughout the history of computing. Since asynchronous serial

interfaces do not pair data lines with a clock line, it means that we need to put more effort into

reliably receiving and transferring data. Both parties must be correctly configured in order to have

an exchange which makes sense. The Arduino program is set up into a setup block, and a loop

block. On power up, the setup code executes once, and then the code inside of the loop block

gets repeatedly executed as quickly as possible, if not throttled. The protocol we built contains

a blocking delay while the data line is clear, and as soon as data is available, it is checked for an

expected start of transmission character. If the character is found, the remaining bytes in the line

will be read into a char array until an end of transmission character is found, or the read times out.

If the end of transmission character is found, the data received is flagged as good, and an if-else

ladder determines the next computational step to take. On the application side, things get more

interesting.

8



3.3 PC

Within our C# application, a layered class hierarchy constructs and handles a serial port object’s

interactions with the outside world. The first layer, named the abstraction layer, communicates

directly with the hardware and builds a thin wrapper around .NET’s SerialPort class. It is built for

re-usability and allows the user to easily instantiate a serial port and communicate with it directly

or through a business logic layer class. This application specific class packages the message to

be sent out and attempts to unwrap received messages, as well as handling any error conditions

found after unwrapping. Finally, the main WPF within our application spins up an instance of

the business layer and communicates with it in basic terms through its public interface. All data

exchange between classes follows an event-driven programming model; any send or receive event

cascades events into the other classes. Figure 7 gives a visual representation.

Figure 7: Serial communication layers

9



4 Software

This section contains details on the pre and post-processing required to transform the depth frames

acquired from the sensor/receiver pairing into a standardized 3D representation of the target object,

as well as the navigation of the user interface of our application. The application back end was

developed using C# in the Microsoft Visual Studio IDE, Microsoft’s WPF graphical subsystem

was used to construct the user interface, the Genuino Uno was programmed in C++ and compiled

within the Arduino IDE, the majority of the C++ postprocessing code was sourced and compiled

in MSVC, the C++ motor stepper driver chip libraries were modified and compiled within Visual

Studio, and finally some of the file conversion methods we sourced are written in C++, modified

within notepad++, and compiled using mingw32’s gcc compiler. All project files were managed

using multiple GitHub repositories. This report was created with TeXstudio.

4.1 Initialization

In order to initiate the automatic scanning sequence, the user must first configure the environmental

and processing variables located within the application. As soon as the user executes the program,

a window appears with several tabs which allow for movement to the different parts of the program.

The first step is to set the alignment of the axis of rotation. This is completed by placing a solid,

regular polyhedral shape perpendicular to the scanner with one edge passing over the absolute

center of the platform. Using the calibration tab, the user is able to set the center point of rotation,

a critical value which will be paramount in conglomerating successive scans into a point cloud which

is processable. After the calibration axis is determined either programmatically or manually, within

the alignment tab, the user is required to align the Kinect’s field of view by indicating a spanning

3D volume which encapsulates the target object completely and does not contain any unwanted

objects, such as a background object or the rotating platform itself. Then, the user has a plethora

of sampling options to experiment with, in order to obtain the most accurate point cloud from

scanning. These options include setting the rotation angle, which is realized as the amount of

different scans per complete rotation, the amount of depth frames to to average per scan, and octal

tree point cloud downsampling options, which are discussed in the software section. These settings

10



will propogate between program sessions by writing them to a configuration file on application close,

and loading them in when the application is reopened.

4.2 Data Acquisition

As soon as the user is satisfied, he presses the scan button, which starts the scanning sequence. The

below flow chart illustrates the logic flow visually. The thread which handles the scanning begins a

handshaking sequence in which the Kinect Sensor acquires one or several depth information frames

and stores it or the averaged result in a collection, then tells the application that the scan has

been completed. Then, the application issues a step command to the microboard which routes the

command to the stepper motor driver chip. After stepping and then verifying that the step occured

without error, the scan command is relayed to the Kinect, and so on and so forth, until the provided

number of scans of the target object have been taken and stored in memory. The collection of scans

is then conglomerated into a single Vector3 array, applying a rotational transform to the points

about the axis of rotation based on the angle at which the currently in focus scan was taken relative

to the original scan.

Figure 8: Data flow

11



4.3 Data Preprocessing

The resultant array of points is not a good approximation of the surface of the object in question,

no matter what its dimensions, as the composite error of the sampling rate, the alignment of

the center point, and any mechanically introduced offset of the object is non-trivial. The noisy

point cloud is not particularly useful to us. At this stage we are interested in programmatically

refining the data into something usable. We do this by applying an Octree inspired algorithm to

intelligently downsample the data. The algorithm constructs a bounding cube around the target

object, subdivides it evenly into smaller cubes of minimum user indicated length, based upon the

rough estimation of the sampling error. Each cube contains a given amount of points of the original

point cloud. We conduct statistical analysis on the number of points in each cube, removing all

cubes containing points less than one standard deviation away from the mean. This dramatically

improves the quality of the cloud. A bottom layer is constructed using the bottom most layer of

the Octree subdivisions and determining whether or not a constructed grid point falls within the

shape bounds. Optionally, the user may choose to apply the same algorithm, but to the top of the

shape. After the data cleaning has finished, the file is exported to a temporary processing directory

within the file structure of the application as a .pts points file, which is a text file which describes

each point in the point cloud as Vector with an X,Y and Z component.

Figure 9: Example of a clean point cloud

12



4.4 Data Postprocessing

After the point cloud is acquired, the application programmatically builds and then executes a batch

file based on the user’s configuration selections. This execution begins the C++ post processing

layer. The goal of this layer is to transform the point cloud into an isosurface representation of

the target object. After researching methods of point cloud reconstruction, we decided to use the

works of a pioneer in the field, Hugues Hoppe, to achieve this. Hugues Hoppe holds a PhD in

Computing Science from the University of Washington for his thesis [1]. This thesis is an analysis

and solution of how to mathematically reconstruct a 3D shape from a point cloud, using a step

by step procedure. The major advantage his method provides relative to previous reconstruction

methods is that no additional information is required along with the point cloud, such as structure

in the data, surface genus, or orientation information. Through mathematical analysis, the method

is able to infer the topological type of the object, its geometry, and location of problem features,

such as sharp edges. His reconstruction method contains three major phases: initial surface esti-

mation, mesh optimization, and piecewise smooth surface optimization. A major issue faced by

our project was the application of the latter functionality due to the lack of precision in our point

cloud. Hoppe’s advanced reconstruction techniques’ effectiveness depends primarily on the quality

of points collected. A description of the algorithm’s assumptions and procedures to deliver a smooth

isosurface representation of a point cloud follow:

4.4.1 Definitions

In order to explain the math behind the processes involved, some definitions are necessary:

Definition 1 (mesh) A mesh can be defined as a piecewise linear surface, consisting of triangular

faces pasted together along their edges.

Definition 2 (sampling process assumption(sampling noise/density)) The sampling pro-

cess assumption is an assumption based upon the sampling accuracy and point cloud density which

logically eliminates the possibility of a given point r ∈R 3 being part of the surface U of the scanned

object. More precisely, if X is the point cloud, then if ∃δ such that ∀xi, yj ∈ X, δ ≥ |xi − yj| we

define X as δ -noisy. If we find the minimum radius ρ of a sphere with center in U such that

13



any of these spheres contains at least one point in Y , Y being a noiseless ρ-dense sample of the

surface U then Y is defined as ρ -dense. From these definitions it follows that no point p ∈ U

has a distance to the point cloud X greater than δ+ ρ . This is an important limiting factor in the

size of mesh triangles, as if we go smaller than this composite error, holes begin to appear in the

reconstructed mesh.

Definition 3 (principal analysis) Principal analysis is a technique used for identification of a

smaller number of uncorrelated variables known as principal components from a larger set of data.

4.4.2 Initial Mesh Reconstruction

The problem statement for the first part of the reconstruction process can be stated as follows: for a

given unorganized, noisy sample X of an unknown surface U , create a mesh Mo that approximates

U .

The key idea in this phase of processing is to develop a function F (p), p ∈ X that determines the

signed distance D to the mesh Mo in order to provide a more powerful algorithm which can compute

the triangle mesh of the point cloud the information it needs to execute. To do this, we need several

ingredients. The first step is to associate an oriented tangent plane Tp ∀p ∈ X . These shall be

local approximations of the surface U . To determine these local approximations and their normals

we need to inspect the group of points within distance δ + ρ , denoted as Nbhd(pi) . The center

of the tangent plane T (pi) is the centroid of the Nbhd(pi) , and the normal ni is computed using

principal analysis. A covariance matrix Cvi is formed and the normal ni is computed by finding

the unit eigenvector with smallest eigenvalue of this matrix, and then selecting the orientation

such that nearby tangent planes are consistently oriented. The procedure to determine whether or

not the normals are consistent within a neighbourhood can be modeled as a graph optimization

problem, but we won’t go into the solution here.

Now that we can compute ni for each point p , the next ingredient comes from the realization

that the distance function D(r) for an arbitrary point r ∈ R 3 to the surface U is simply the

distance between the closest point in U to r multiplied by ±1 , depending on whether the point is

inside or outside. Since U is unknown, we approximate the distance using the tangent plane T (p)

14



who’s centroid is closest to r . The tangent plane is a local approximation to U so we take the

signed distance between r and its projection z onto T (p) .

Now that we have come up with an approximating function which expresses the signed distance

from an arbitrary point r ∈R 3 to the surface U , we are able to implement a variation of the

marching cubes algorithm to reconstruct a mesh from the point cloud. This algorithm works by

dividing the smallest bounding cube of the object into smaller cubes C , with edge length greater

than the composite error in sampling rate explained above. The vertices of each smallest cube are

inspected as either inside or outside of the object U . The cubes’ vertex configurations (of which

there are 28 variations as in/out is binary and there are eight edges in a cube) are then passed

into a lookup table which returns the polygonal representation of the cube. These representations,

taken fully, are then the polygonal mesh Mo that we are interested in.

4.4.3 Mesh Optimization

This process seeks to improve the accuracy and conciseness of the mesh Mo , in preparation for

smoothing the surface. The problem can be stated as follows: Given a collection of data pointsX ∈

R 3 and an initial mesh Mo near the data, find a mesh M of the same topological type as Mo

that both fits the data well and has a small number of vertices. To solve the optimization prob-

lem, an energy function which captures the competing desires of tight geometric fit and compact

representation is minimized. As input for this function we use the resultant mesh Mo from the

first phase. Then, an optimization algorithm minimizes this function by varying the number of

vertices, their positions, and their connectivity under the constraint that the shape of the original

mesh is maintained. Simply stated, the optimization code works on the space of all meshes M

which are of the same topological type as the input, seeking the simplest representation. A user

defined parameter indicates how the accuracy and conciseness of the mesh should be weighed when

determining the optimal mesh. This control is visible in the processing tab of our application.

4.4.4 Surface Smoothing

In essence, this final phase of the process is a natural extension of the second phase. The problem

can be stated as follows: given an optimized piecewise linear surface find a concise control mesh

15



M of the same topological type and define a piecewise smooth subdivision surface that accurately

fits the points. Similarly to phase 2, an energy minimization problem is set up that trades off

conciseness and fit to the data.

4.4.5 Output

The resultant smoothed .m mesh file produced via the executed batch file is saved into a processing

subdirectory in the project. A FileWatcher watches for this file creation and upon creation imme-

diately consumes it and transforms it into an .stl file. This file is then available for viewing within

the application. If the user is satisfied with the result, he can save the file on his computer using a

dialog. This completes the reconstruction process.

4.5 User Interface

Our application features a very concise and easy to operate user interface. It was designed using

XAML, which stands for eXtensible Application Markup Language. XAML is Microsoft’s variation

of XML for describing graphical user interfaces. Much like HTML, the UI is easy to build and the

C# back end handles events and hooks up easily to the controls in the front end. XAML controls

can be built and reused, similar to creating skin files in ASP.NET.

The UI features several tabs which the user can click to navigate to different parts of the appli-

cation. Generally speaking, the options within the different tabs are used to tweak configuration

options to generate the best result possible. Multiple values are taken into consideration when

generating the batch file to execute the postprocessing C++ code, and .NET Dialog objects handle

the file RW for a clean user experience.

16



Figure 10: User interface

17



5 Results/Conclusion

Wemanaged to transform non-complex real world objects into isosurface 3D representations through

a completely automatic process. The deliverable at the time of writing this report is a standard .stl

file which represents the object which is scanned, to varying degrees of accuracy. Reconstructing

simple polyhedral shapes works great, but the quality of gathered point clouds quickly diminishes

proportionally to the complexity of the target object. We were pleased with the results that we

obtained, however the system has much room for improvement. If we had additional time to work

on this project we would have liked to reduce the composite error of the sampling process and

the point density, as it was the limiting factor in applying higher resolutions of the reconstruction

algorithms we used. Much depends on the quality of point cloud data gathered at the start of

process, and we would have liked to have improved on our methodology in acquiring data. Overall,

the project was a success, and the team dynamic was great throughout the work period. The skills

we developed will without a doubt help us in the near future when we step into our careers.

18


	Abstract
	Introduction
	Hardware
	Kinect
	Platform
	Motor
	Motor Driver Chips: TMC2130 and EasyDriver v4.5
	Microcontroller

	Communications
	Stepper Motor Driver  Micro
	Microcontroller
	PC

	Software
	Initialization
	Data Acquisition
	Data Preprocessing
	Data Postprocessing
	Definitions
	Initial Mesh Reconstruction
	Mesh Optimization
	Surface Smoothing
	Output

	User Interface

	Results/Conclusion

